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Abstract

Background: Short-term fall prediction models that use electronic health records (EHRs) may enable the implementation of
dynamic care practices that specifically address changes in individualized fall risk within senior care facilities.

Objective: The aim of this study is to implement machine learning (ML) algorithms that use EHR data to predict a 3-month
fall risk in residents from a variety of senior care facilities providing different levels of care.

Methods: This retrospective study obtained EHR data (2007-2021) from Juniper Communities’ proprietary database of 2785
individuals primarily residing in skilled nursing facilities, independent living facilities, and assisted living facilities across the
United States. We assessed the performance of 3 ML-based fall prediction models and the Juniper Communities’ fall risk
assessment. Additional analyses were conducted to examine how changes in the input features, training data sets, and prediction
windows affected the performance of these models.

Results: The Extreme Gradient Boosting model exhibited the highest performance, with an area under the receiver operating
characteristic curve of 0.846 (95% CI 0.794-0.894), specificity of 0.848, diagnostic odds ratio of 13.40, and sensitivity of 0.706,
while achieving the best trade-off in balancing true positive and negative rates. The number of active medications was the most
significant feature associated with fall risk, followed by a resident’s number of active diseases and several variables associated
with vital signs, including diastolic blood pressure and changes in weight and respiratory rates. The combination of vital signs
with traditional risk factors as input features achieved higher prediction accuracy than using either group of features alone.

Conclusions: This study shows that the Extreme Gradient Boosting technique can use a large number of features from EHR
data to make short-term fall predictions with a better performance than that of conventional fall risk assessments and other ML
models. The integration of routinely collected EHR data, particularly vital signs, into fall prediction models may generate more
accurate fall risk surveillance than models without vital signs. Our data support the use of ML models for dynamic, cost-effective,
and automated fall predictions in different types of senior care facilities.
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Introduction

Background
Falls are a serious and complex safety concern, leading to
mortality, morbidity, and increased health care costs associated
with aging. Accidents are the fifth leading cause of death in
older adults, and falls account for two-thirds of all accidental
deaths [1]. Individuals who live in institutions fall more often
(1.5 falls per bed per year) than community-living individuals,
of whom the latter are generally healthy older people [1].
Between these 2 groups, it is estimated that 60% will experience
a fall each year [2]. Most falls have a multifactorial origin.
Previously reported fall risk factors include gait impairment,
balance impairment, age, sex, cognitive decline, diminished
vision, fall history, medications that affect the central nervous
system, and several comorbidities [3-10]. Current fall risk
profiles in nursing homes rely primarily on strength, gait, and
balance measures [11]. Frequent administration and
quantification of instruments that consider comprehensive risk
factors create a challenge both in terms of impeding workflow
and interpreting results. Evidence for the best choice for fall
risk assessment in long-term facilities remains limited [2,12,13].

Electronic health records (EHRs) contain routinely collected
real-time information that represents most fall risk factors and
thus offer the potential for dynamic surveillance of senior
residents in long-term facilities to identify short-term fall
triggers. Although the wide range of fall risk factors embedded
in EHR data poses methodological challenges to most traditional
statistical approaches, machine learning algorithms (MLAs)
can screen a multitude of interacting risk factors from big data.
Machine learning (ML) is a subfield of artificial intelligence
that can use sample data to build a model for predicting future
outcomes or identifying hidden patterns of intrinsic structures
within input data without explicit programming or data
engineering. The two most commonly used ML methods are
supervised and unsupervised learning. Supervised learning trains
algorithms based on labeled training data, whereas the
unsupervised learning approach does not require labeled training
and can find structures within the data. Several EHR-based
MLAs have been developed for fall risk predictions in
hospitalized patients [14-18]. Few studies have explored the
utility of ML approaches for senior residents in
community-dwelling or long-term assisted living facilities
[19-23]. Here, we developed an EHR-based supervised ML
model using a gradient boosting (Extreme Gradient Boosting
[XGBoosting]) algorithm to evaluate fall incidents within a
3-month window. By implementing advanced MLAs on EHR
data from different types of long-term care facilities, we
expected that our model would uncover the impact of a wide
range of clinical and pathophysiological fall predictors across
heterogeneous cohorts. We also hypothesize that these MLAs
will outperform traditional fall risk assessments and standard
ML techniques that are less compatible with EHR data in terms
of dealing with missing data and class imbalances. Our previous
studies with EHR data have shown that XGBoosting
outperforms other ML models, such as logistic regression and
simple forms of neural network-based models [24].

As most residents at long-term care facilities are at heightened
risk of falls, more accurate short-term risk predictions would
help identify individuals who may require more assistance with
daily activities and enable care practices that are tailored to
address short-term changes in fall risk and provide more
dynamic fall risk profiles of residents for staff. Although
previous research has primarily focused on identifying factors
that increase the risk of falls, special emphasis must be placed
on identifying factors that can reduce fall risk. In this context,
it is critical to explore both the positive and negative associations
between individual predictors and fall risk.

Objective
The primary objective of this study is to determine the utility
of ML in predicting short-term falls in long-term senior care
settings and determine whether performance accuracy remained
consistent in different types of facilities that are characterized
by different levels of residents’ frailty and staff care
(independent living, assisted living, and nursing homes). The
inclusion of various measurements associated with vital signs,
in addition to traditional risk factors that are incorporated into
standard fall risk assessments, was one of the key designs of
our ML models. Vital sign measures, such as blood pressure
and respiratory rate, are dynamic parameters that reflect
real-time changes in physiological function because of aging,
frailty, different diseases, and treatments [25]. Although changes
in vital signs are recognized as potential precursors to falls [26],
the predictive value of these variables for fall risk in long-term
senior care facilities has not been fully explored.

Methods

Data Source and Inclusion and Exclusion Criteria
This study used data collected from a proprietary database
containing EHR data from senior living communities (Juniper
Communities, LLC) in the United States. The Juniper facilities
included in this study were skilled nursing facilities, independent
living facilities, assisted living facilities, and other non-major
facilities without specific designations. Data were extracted
from 2007 to 2021. Data were deidentified in compliance with
the Health Insurance Portability and Accountability Act. As
this study constituted nonhuman participants research per 45
Code of Federal Regulations 46.102, institutional review board
approval was not required. Initially, the Juniper EHR contained
data from 2785 residents. The first step of the filtration process
removed residents who did not have the first measurement time,
the last measurement time, or any EHR data, including
diagnostic codes. We then excluded all residents age <60 years.
Finally, we removed all residents who did not have at least 1
month of data available before the MLA runtime, defined as
the time at which our algorithm predicted a fall. Figure 1 shows
the participant inclusion and exclusion diagram.

Participants and fall incidence (positive cases) were identified
according to both the International Classification of Diseases
(ICD), Ninth Revision, and the ICD, Tenth Revision, as the
EHR included resident data from October 2015. These codes
included W00-W119 and R29.6 [27]. For a portion of the study
cohort that did not have fall ICD codes, fall incidences were
identified from string searching progress notes with fall-related
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strings, such as “fall” and “on the floor.” To meet the gold
standard definition of our study, the fall had to occur within a
3-month period before the last measurement, as shown in (Figure
2A). The last measurement time was defined as the time at
which data were collected from the resident. We used the
distribution of the time differences between the fall incidents
and the last measurement time (Figure 2B) of our cohort as a

guideline for selecting the prediction window. We determined
that the selection of a 3-month prediction window offered a
good trade-off between maximizing the number of positive
cases; that is, participants who experienced a fall within the
given time while remaining within a reasonably short prediction
window. A shorter prediction window reduces the number of
positive cases, leading to a more imbalanced data set.

Figure 1. Participant encounter inclusion and exclusion diagram. EHR: electronic health record.
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Figure 2. (A) Study design timeline. (B) Selection of the optimal prediction window based on the distribution of the fall incidence time. EHR: electronic
health record.

ML Input Features for Fall Prediction
We conducted a literature search to gather previously reported
fall risk factors and determine whether they could be identified
within the EHR system based on relevant ICD codes, string
searches, or keyword queries. We included several major risk
factors such as age, sex, previous fall history, weakness,
dizziness, cognitive impairment, dementia, depression, impaired
mobility, and gait or balance abnormalities [3,28,29]. The fall
history was included as the time difference between the MLA
runtime and the most recent history of falls normalized to a
year. In addition to dementia, depression, and mood disorders,
we included other comorbidities [30] and medications implicated
in fall risk [31-33] (Table S1 in Multimedia Appendix 1).
Medications included benzodiazepines [9,34], antiepileptics
[35], angiotensin-converting enzyme inhibitors [32],
antidepressants [9], antipsychotics [36], narcotics [37], diuretics
[36,38], β-blockers [39], antihistamines [33], neuromuscular
blocking agents [40], calcium channel blockers [32],
antiarrhythmics [41], sedatives, and hypnotics [9]. The
participants’ vital sign measures and laboratory results were
queried using the key names in the EHRs. The complete list of
features and associated ICD codes can be found in Tables S1
and S2 in Multimedia Appendix 1. The feature importance
metric was used to preselect the best features for the ML models,
reducing the number of features from 250 to 68. Bolded features
in Table S1 in Multimedia Appendix 1 are those that were
preselected on the feature importance metric. These features

included age, sex, specific vital sign measurements (diastolic
and systolic blood pressure, heart rate, respiratory rate, and
temperature), specific physical and movement features (height,
weight, history of falls, and lower extremity fracture or
dislocation), specific comorbidities (hypertension, chronic heart
failure, stroke and cerebrovascular, and number of active
diseases), and medications (benzodiazepines,
angiotensin-converting enzyme inhibitors, antiepileptic and
anticonvulsants, and total number of active medications). In
addition to feature importance, the Shapely Additive
Explanations (SHAP) analysis enhances the interpretability of
the model by showing positive and negative associations and
their strengths between individual features and fall risk.

For vital sign measurements, 4 months of data were used before
the algorithm runtime. We filtered out data (vital signs and
laboratory measures) that were identified as extreme outliers
using the physiological minimum and maximum values. After
removing these outliers, summary statistics, including minimum
(min), maximum (max), mean, standard deviation (SD), last
measurement (last), and the number of measurements (number),
were used as input features. We calculated the summary
statistics of the patient data over the last 1 month. Features
related to comorbidities or medications were added as either
previous or current comorbidities and medications. Given that
our data did not provide structured information about medication
dosage, we were not able to include dosage as an input feature.
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Comparison With Standard of Care
An internal fall risk assessment conducted by Juniper
Communities staff served as a comparator. Participant scores
(0-25) were tallied from several items, including the level of
consciousness or mental status, history of fall, ambulation
elimination, vision, gait, balance, medications, systolic blood
pressure, and previous predisposition (eg, vertigo, obesity,
osteoporosis, or Parkinson disease).

ML Model
Our primary model, XGBoosting, was a gradient boosting
algorithm [42] implemented in Python [43]. XGBoosting
combines the results from various decision trees to obtain the
prediction scores. Within each decision tree, the resident
population was split into successively smaller groups, as each
tree branch divided the residents who entered it into 1 of 2
groups based on their covariate value and a predetermined
threshold. Fall residents were represented at the end of the
decision tree, which were a set of leaf nodes. After the
XGBoosting model was trained, successive trees were developed
to improve the accuracy of the model. Successive iterations of
trees use gradient descent on the prior trees to minimize the
error of the next tree that was formed. XGBoosting has been
shown to exhibit excellent performance for a wide range of
classification problems in acute and chronic conditions [44-48].
For comparison with the structurally complex XGBoosting
model, logistic regression and multilayered perceptron models
were also trained and tested. A multilayered perceptron is a
common network architecture with feed-forward neural
networks composed of several layers of nodes with
unidirectional connections. Unlike the XGBoosting model,
logistic regression and multilayered perceptron models are
unable to incorporate missing data; therefore, the median of
observation was used for imputation of the features. In addition,
we standardized our data for both the logistic regression and
multilayered perceptron models. All the 3 models were trained
using the same 68 inputs. The development environment of our
MLAs (software package, library, and version) is summarized
in Table S3 in Multimedia Appendix 1.

We used a standard approach to train ML models. We
partitioned the data set into a train:test ratio of 80:20 with
stratified sampling because the positive class was relatively
small with respect to the negative class. Both the training and
test sets included a random mix of all four types (skilled nursing
facilities, assisted living facilities, independent living facilities,
and others) of long-term facilities within Juniper Communities.
All the models underwent hyperparameter selection using a
5-fold cross-validation grid search. The optimization of
hyperparameters was confirmed by evaluating the area under
the receiver operating characteristic (AUROC) curve for
different combinations of hyperparameters included in the grid
search. For XGBoosting, the optimization parameters were the
maximum tree depth, regularization term (lambda), scale
positive weight, learning rate, and number of estimators. The
scale positive rate can be readily optimized within the
XGBoosting algorithm to handle class imbalance in the data
set (a lower number of residents who experienced a fall). We
used a parameter space of (4, 6, 8, 10) for tree depth, (0.5, 1.0,

2, 3) for lambda, (1, 3, 5, 7, 9, 11, 13) for scale positive weight,
(0.0001, 0.001, 0.01, 0.1) for learning rate, and (50, 75, 100,
125, 150, 500) for the number of estimators. The XGBoosting
model used 6, 1.0, 13, 0.001, and 75 as the optimized values
for the aforementioned parameters. For logistic regression, the
optimization parameters were the penalty term, class weight,
optimization problem solver, and inverse of regularization
strength. The optimization parameters of the multilayered
perceptron model included the maximum iteration, hidden layer
size, and learning rate. For the logistic regression and
multilayered perceptron models, missing values were handled
using various imputation approaches. Missing measures of vital
signs were imputed using the forward and backward filling
approaches. For all other features, the mean measurement of
the features across all the training set data was used for the
imputation. For the logistic regression model, the inputs were
scaled using a standard scaler from scikit-learn. The optimization
algorithms for the logistic regression model included the
limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm
and L2 regularization. The multilayered perceptron model
incorporated a hidden layer of size 250. The convergence of the
solver iteration was determined either by reaching a maximum
number (100) of iterations or by reaching a value of 1e-9 for
the tolerance optimization parameter. All other parameters were
kept at default values from the scikit-learn multilayered
perceptron classifier. The performance of each model was
assessed against the test data set with respect to the receiver
operating characteristic (ROC) curve, sensitivity, and specificity.
The confidence intervals (CIs) for these metrics were
constructed using 1000 bootstrapped samples. SHAP [49]
analysis was performed to evaluate the feature importance.

Exploratory Analyses
Several exploratory analyses were conducted in this study. In
the first experiment, we examined how the performance of the
XGBoosting, logistic regression, multilayered perceptron, and
comparator changed after reducing the prediction window to 2
months. We conducted a secondary experiment in which we
separated the training and testing sets based on the type of
facility (skilled nursing, independent living, and assisted living
facilities). In the first case, data from the skilled nursing facility
were used as the testing set, whereas data from all other facilities
were used for model training. In the second case, assisted living
facility data were used as the testing set, whereas data from all
other facilities were used for model training. Owing to the small
number of positive cases, independent living facilities were not
tested separately. We conducted a third experiment in which
we modified the input features of all 3 ML models to evaluate
their impact on the model performance. First, we removed vital
signs from the input features. Then, we included only the vital
signs and demographic information (age and sex) and removed
all other features, such as fall history, comorbidities, and medical
conditions.

Results

Data Set Characteristics
In total, 2785 residents were included in this study, of whom
153 (153/2785, 5.49%) fell within the 3-month prediction
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window of our algorithm, as defined by our gold standard. The
number of women was approximately twice that of men. Group
differences were calculated using an exact binomial test for
noncontinuous variables and 2-tailed Welch t test for continuous
variables to handle the unequal variance associated with the 2
groups. The fall incidents varied among the types of facilities
(Table S4 in Multimedia Appendix 1). Skilled nursing facilities
had the highest (49/489, 10%) and independent living facilities
had the lowest (5/69, 7%) fall incidents. Table S5 in Multimedia
Appendix 1 summarizes the demographic and diagnostic
information for nonfall residents (negative cases; age: mean
85.7, SD 9.5 years) and fall residents (positive cases; age: mean
86.6, SD 8.2 years).

Model Performance
The complete list of performance metrics for the MLAs and
comparator is shown in Table 1. The ROC curves for the hold
out test set are shown in Figures 3A and 3B. The XGBoosting

model exhibited the highest performance with an AUROC of
0.846 for the prediction of falls within the next 3 months. The
logistic regression model and the multilayered perceptron model
demonstrated AUROCs of 0.711 and 0.697, respectively. The
comparator (Juniper fall assessment) had an AUROC of 0.621.
We selected an operating sensitivity of 0.70 for all 3 ML models
and 0.35 for the comparator (based on the Juniper fall risk score
threshold). The feature importance plot (Figure 4) shows the
most important XGBoosting features, including the number of
active medications, number of active diseases, SD of weight,
mean diastolic blood pressure, and SD of respiratory rate.
Younger age, lower weight fluctuations, and a larger number
of active diseases were associated with a lower fall risk. A
higher number of active medications was associated with a
higher risk of falls. A higher mean value of diastolic arterial
blood pressure (DiasAB) and higher fluctuations in respiratory
rate were associated with lower fall risk.

Table 1. Performance metrics and 95% confidence intervals (CIs) of the gradient-boosted decision trees model (Extreme Gradient Boosting) with the
top 68 features, the Juniper fall risk assessment score, and other machine learning models (logistic regression and multilayered perceptron) for the
3-month prediction of fall.

Juniper fall riskMultilayered perceptronLogistic regressionExtreme Gradient BoostingVariable

0.621 (0.547-0.693)0.697 (0.624-0.765)0.711 (0.645-0.773)0.846 (0.794-0.894)Area under the receiver operating charac-
teristic curve (95% CI)

0.351 (0.217-0.485)0.706 (0.571-0.833)0.706 (0.553-0.859)0.706 (0.577-0.833)Sensitivity (95% CI)

0.883 (0.854-0.911)0.612 (0.566-0.657)0.614 (0.560-0.668)0.848 (0.809-0.888)Specificity (95% CI)

3.0141.8131.8284.647Positive likelihood ratio

0.7330.4810.4790.346Negative likelihood ratio

4.113 (1.881-8.995)3.766 (1.741-8.147)3.816 (1.764-8.256)13.400 (6.026-29.796)Diagnostic odds ratio (95% CI)

12242424True positive

279193194268True negative

3712312248False positive

22101010False negative

0.2890.2480.2620.393F1a

aF score is defined as the harmonic mean between precision and recall.
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Figure 3. Row 1: Receiver operating characteristic (ROC) curves of the Extreme Gradient Boosting (XGBoost) model for three-month prediction
compared with (A) the Juniper fall risk assessment and (B) other machine learning ML models. Row 2: ROC curves of the XGBoost model for a
two-month prediction window compared with (C) the Juniper fall risk assessment and (D) other ML models. Row 3: ROC curves across different
facilities. (E) Skilled nursing facility separated as a testing set and (F) Assisted living facility separated as a testing set. AUROC: area under the receiver
operating characteristic; ML: machine learning; MLP: multilayered perceptron; LR: logistic regression.
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Figure 4. Feature correlations and distribution of feature importance for the Extreme Gradient Boosting (XGBoost) model at the three-month prediction
window. The y-axis on the SHAP plot presents the features in order of importance from top to bottom. The SHAP values on the x-axis quantify the
magnitude and direction in which each feature impacts the model prediction. SHAP: Shapely Additive Explanations.

Reduction of Prediction Window
The ROC curves for the 2-month prediction window on the hold
out test set are presented in Figures 3C and 3D. The XGBoosting
model exhibited the highest performance with an AUROC of
0.753. The logistic regression and multilayered perceptron
models demonstrated AUROC of 0.690 and 0.678, respectively.
The AUROC associated with the Juniper fall risk assessment
score was 0.582. Table S6 in Multimedia Appendix 1 presents
additional performance metrics. Figure S1 in Multimedia
Appendix 1 shows the XGBoosting SHAP plot for the 2-month
prediction window.

Separating Training and Testing Data Set by Facility
Type
The EHR data set used in this study contained data from various
care facilities. As part of the post hoc analyses and external

validation, we separated the training and test sets based on
facility type. The ROC curves for the models are shown in
Figures 3E and 3F, showing that the XGBoosting AUROCs
were higher than all other predictors for both the skilled nursing
facility (0.716) and assisted living facility (0.740) test sets.

Modifying Input Features
The ROC curves associated with the modified input features
(3-month prediction window) are shown in Figure 5. When all
variables related to vital signs were removed, the XGBoosting
model maintained the highest performance with an AUROC of
0.772. Similarly, when using only demographic information
(age and sex) and vital signs as input features, the XGBoosting
model achieved the best performance, with an AUROC of 0.765.
The SHAP plots of the models with the modified features are
shown in Figures S2 and S3 in Multimedia Appendix 1.
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Figure 5. (A) Comparison between receiver operating characteristic (ROC) curves of Extreme Gradient Boosting (XGBoost) without vital signs and
Juniper the fall risk model. (B) Comparison between ROC curves of XGBoost and other machine learning ML models without vital signs. (C) Comparison
between ROC curves of XGBoost using only demographic information (age and sex) and vital signs and the Juniper fall risk model. (D) ROC curve of
three ML models using demographic information and vital signs. AUROC: area under the receiver operating characteristic; ML: machine learning;
MLP: multilayered perceptron; Logistic: Logistic Regression.

Discussion

Summary of the Study
We developed an EHR-based ML model for short-term fall
prediction in different long-term care facilities. Initially, 250
features were extracted from the EHR data, although only 68
features passed the initial selection process based on the feature
importance metric. These features were used to train the final
XGBoosting, logistic regression, and multilayered perceptron
models. Using individual data collected from the residents’
EHR system, XGBoosting outperformed the Juniper fall risk
assessment tool, which yielded only an AUROC of 0.621 versus
0.846 for XGBoosting. XGBoosting achieved a good trade-off
in balancing the true positive and true negative rates (Table 1),
outperforming the 2 other baseline ML models in both metrics.

Best EHR-Based Features for Fall Prediction
Unlike standard fall risk assessment tools, MLA models can
flag the importance of individual variables in predicting fall
risk. The number of active medications was identified as the
most significant feature associated with a higher fall incidence,
followed by a resident’s number of active diseases and weight
changes. The impact of the number of medications on fall
incidents has been reported by previous observations in nursing
homes, demonstrating that fall risk is associated with
polypharmacy regimens that include at least one fall-increasing
drug [41]. The 68 selected (out of 250) best features included
several well-established fall risk factors, such as age, sex, history
of falls, benzodiazepine, and antiepileptic medications. Except
for the number of active medications, active diseases,
hypertension, weight, and age, all other features with the highest
ranking were measurements of vital signs, which were not used
in the Juniper fall assessment. The most significant vital sign
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measure was mean diastolic blood pressure, with higher values
inversely correlated with fall risk. Given that most of our study
participants were women, this finding is also in line with a
previous study on the relationship between blood pressure and
falls in community-dwelling adults aged ≥60 years [50], where
an increase in diastolic and systolic blood pressure reduced the
risk of falls in women. The negative correlation between the
number of active diseases and fall risk was likely because of
the expected mobility restrictions of residents with multiple
concurrent comorbidities. Separating weakness, dizziness, and
unsteadiness due to other comorbidities did not affect the
performance. Including the difference between consecutive vital
sign measurements as individual features also did not improve
the performance; therefore, we removed these features from the
feature matrix to simplify our model.

Reduction of Prediction Window
Although the performance of all 3 MLAs and the comparator
risk stratification tool used by Juniper relapsed after reducing
the prediction window to 2 months, the XGBoosting model
continued to exhibit the highest performance. The observed
performance decline associated with the 2-month prediction
window was likely because of the lack of data, as illustrated in
Figure 2B (loss of positive cases from 153 to 80). The optimal
prediction window (3 months) was selected based on the
frequency of the data present in the EHR. Owing to the
importance of vital signs in predicting short-term fall risks,
more frequent and consistent collection of these variables may
allow shorter prediction windows without losing accuracy.

External Validation
In addition to our primary model, which used EHR data from
various facilities for training and testing, we explored other
models in which one of the facilities was excluded from the
training set but used for external validation. In both test cases,
the XGBoosting-based model outperformed other ML
algorithms. The XGBoosting AUROC in the assisted living
facility test case was slightly higher (0.740) than that in the
skilled nursing facility test case (0.716). This difference may
be explained by the presence of a wider range of medication
and comorbidities and more frequently measured vital signs in
skilled nursing facility residents, making this cohort potentially
a better training set for other facilities with fewer disabilities
and medical conditions in their residents. In general, individuals
living in skilled nursing facilities demand a higher level of
nursing care and assistance with their daily activities than
residents in assisted living communities or independent living
facilities. In this study, the skilled nursing facility fall incidents
were approximately 1.4 times higher than those of independent
living facility fall incidents, which is consistent with previous
epidemiological reports [28].

Impact of Vital Signs
Several previous studies have identified history of falls as one
of the most prominent risk factors for falls [51,52]. In our cohort,
the history of falls was among the 68 preselected features,
although it did not always rank among the top 20. When
removing vital signs from the input features, fall history, lower
extremity fractures, dizziness, and vertigo appeared among the

top-ranking features. Moreover, our findings suggest that the
combination of vital signs with traditional risk factors can
achieve higher prediction accuracy than using either group of
features alone.

Implications of Findings
The Centers for Medicare and Medicaid Services facilities are
required to complete a fall risk assessment upon residents’
admission, using the minimum data set (MDS) tool. Given that
reassessments are not conducted frequently [53-55], changes
in a resident’s fall risk status may not be detected in a timely
manner. The United States Centers for Disease Control has
established the Stopping Elderly Accidents, Deaths & Injuries
program [56] to evaluate clinical fall risk prevention programs
and provide best practice recommendations. The existence of
the Stopping Elderly Accidents, Deaths & Injuries program
highlights the gap in existing risk prediction and risk
stratification tools that are generalizable and have high accuracy.
Commonly used fall risk stratification tools, such as the Morse
Fall Scale, St Thomas’s risk assessment tool in falling inpatients,
and the Berg Balance Scale [31,57], rely on a clinician’s
assessment of gait, mental status, and mobility. As Juniper
facilities have their own internal fall risk assessment, this was
an appropriate comparator for our study, as opposed to
comparing our MLA with any of the aforementioned tools.
Traditional models overlook other significant fall risk factors
that we identified in our ML models, such as diastolic blood
pressure and respiratory rate, which are measurements easily
obtained from EHR data without interrupting the clinical
workflow. The sensitivity of these tools is inconsistent across
the literature, ranging from 33.33% to 95% [58]. Using the MDS
data set, the study by Marier et al [53] examined the use of MDS
in tandem with EHR data, as the latter incorporates more
frequent clinical measurements that may indicate changes in an
individual’s health status, thus potentially providing improved
risk assessment [51]. The study determined that the use of EHR
data improved fall risk identification by 13% compared with
using only MDS data, which may be attributed to the fact that
EHR is updated more frequently. Long-term care facilities have
a lower rate of EHR implementation and use than other clinical
settings (18%-48%). Using an XGBoosting-ML approach with
EHR data without vital signs, the study by Ye et al [27]
predicted fall incidents in hospitalized patients >65 years of
age. At the 1- and 2-month prediction windows, they were able
to predict only 55% to 58% of falls, which may be attributed
to the lack of vital signs in their model. The EHR-based ML
models for fall prediction are also cost-effective. Early
identification of high-risk individuals can enable prompt
intervention, such as the removal of environmental hazards or
providing additional assistance with specific daily activities
(bathroom visits), behavioral therapy, and exercise for muscle
strengthening.

Study Limitations and Future Directions
Our study has several limitations. First, this study was restricted
to retrospective data with highly imbalanced classes, missing
data, and a higher prevalence of women in the data set. Although
the ML algorithms implemented several optimization parameters
to overcome these shortcomings (see Table S6 in Multimedia
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Appendix 1 for model performance evaluation in women and
men), the impact of EHR data quality and class balance on
model performance could not be evaluated in this study.
Regarding medication use, previous research has identified a
dose-response relationship between medications, particularly
benzodiazepines [59], and fall risk. Given that our data did not
provide structured information about medication dosage, we
were not able to include dosage as an input feature. The lack of
standardized data collection methods for residents of different
types of communities poses another methodological challenge.
In particular, the collection of vital sign measures was highly
variable across facilities and individuals. Given the importance
of vital signs for fall risk, a more frequent and consistent
collection of vital signs could leverage the extraction of
fine-grained features (change in diastolic pressure between
measurements). Although the study findings were validated
across different types of Juniper care facilities, the
generalizability of the findings outside Juniper Communities
warrants further investigation. More than half of the individuals’
fall incidences were not recorded using ICD codes (gold
standard), and a manual search of their progress notes was
required to identify these falls. Other study limitations include
the lack of information regarding the severity of medical

conditions and the potential that some fall events were missing
from the EHRs. Further research and the use of our MLAs for
fall risk prediction before implementation are warranted. Future
directions for this research will focus on developing and
implementing more interpretable ML models, such as the
explainable boosting machine or deep learning techniques (eg,
recurrent neural networks). This will allow for the incorporation
of additional forms of digitized physiological and behavioral
data that may be relevant to fall risks. Recurrent neural networks
can process sequences of input data with variable lengths,
making them applicable for recognizing patterns in
electrocardiogram signals, motion, and speech notes [60-63].

Conclusions
This study shows that the XGBoosting technique can use a large
number of features from EHR data to make short-term fall
predictions with a better performance than conventional fall
risk assessments and other ML models. The integration of
routinely collected EHR data, particularly vital signs, into fall
prediction models may generate a more accurate fall risk
surveillance than models without vital signs. Our data support
the use of ML models for dynamic, cost-effective, and
automated fall prediction in different types of senior care
facilities.
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